skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Njavro, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multicore PC-class embedded systems present an opportunity to consolidate separate microcontrollers as software-defined functions. For instance, an automotive system with more than 100 electronic control units (ECUs) could be replaced with one or, at most, several multicore PCs running software tasks for chassis, body, powertrain, infotainment, and advanced driver assistance system (ADAS) services. However, a key challenge is how to handle real-time device input and output (I/O) and host-level networking as part of sensor data processing and control. A traditional microcontroller would commonly feature one or more Controller Area Network (CAN) buses for real-time I/O. CAN buses are usually absent in PCs, which instead feature higher bandwidth Universal Serial Bus (USB) interfaces. This article shows how to achieve real-time device I/O and host-to-host communication over USB, using suitably written device drivers and a time-aware POSIX-like “tuned pipe” abstraction. This allows developers to establish task pipelines spanning one or more hosts, with end-to-end latency and throughput guarantees for sensor data processing, control, and actuation. 
    more » « less